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ABSTRACT

The field of speech enhancement aims to improve the clar-
ity and quality of speech by reducing unwanted background
noise and other distortions. Recently, deep learning-based
speech enhancement models have achieved impressive results
in enhancing speech quality by leveraging non-causal pro-
cessing, where models have access to both past and future
audio context, allowing them to analyze the full audio se-
quence. This non-causal approach enables models to produce
clean speech that is highly accurate and perceptually natural.
However, such models are unsuitable for real-time applica-
tions due to their non-causal nature.

In real-time scenarios, models must operate based only on
past and present inputs, which introduces challenges in effec-
tively capturing contextual information. In this paper, we uti-
lize a causal version of the CovTasNet model, aiming to pre-
serve enhancement quality using a student-teacher approach.
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1. INTRODUCTION

Speech enhancement is a field aimed at improving the qual-
ity of speech by mitigating the effects of background noise.
In recent years, significant advancements have been made in
this field, primarily driven by breakthroughs in deep learn-
ing. Speech enhancement models have achieved impressive
results in enhancing speech quality by leveraging non-causal
processing, where models have access to both past and fu-
ture audio context, allowing them to analyze the full audio
sequence. However, such models are unsuitable for real-time
applications due to their non-causal nature.

In real-time scenarios, models must operate based solely
on past and present inputs. In this paper, we utilize a causal
version of the ConvTasNet model and investigate whether a
teacher-student framework can further enhance causal speech
enhancement models. In the subsequent sections of this pa-
per, the student model refers to a causal version of the Con-
vTasNet, while the teacher model refers to a non-causal Con-
vTasNet. We propose to explore various configurations for
training the student model, including:

(1) training the student model using only the labels, (2)
training the student model directly from a pre-trained teacher

model, (3) training the student model using a combination of
a pre-trained teacher model and labels, and (4) training the
student model using only the labels with other regularization
techniques. Additionally, we will implement an end-to-end
flow for (2) and experiment with an intermediate loss when
training a student from a teacher.

2. METHODS

2.1. Data

The EARS dataset[/1] is designed for robust speech processing
research, featuring speech recordings in diverse acoustic en-
vironments with varying noise and reverberation levels. The
dataset includes paired clean and noisy recordings, where the
noisy recordings are generated by overlaying noise onto clean
speech. It is organized into training (14,256 pairs of clean and
noisy recordings), validation (288), and test (834) sets. Ad-
ditionally, the data is resampled to 16 kHz to facilitate faster
model training.

2.2. ConvTasNet model architecture

The ConvTasNet model[2] is designed to perform end-to-end
speaker-independent speech separation directly in the time
domain. The model consists of three key components: an
encoder, a separation module, and a decoder. But importantly
the intent of this paper is training a causal model, whereas the
ConvTasNet model is purely non-causal.

The encoder transforms short overlapping segments of the
input waveform into a high-dimensional feature representa-
tion using a 1-D convolutional layer. The convolutional ker-
nels act as a bank of learnable filters/methods for decompos-
ing the signals into features.

The Separation Module, also the mask generator in the
code, employs a Temporal Convolutional Network (TCN) to
estimate masks that isolate each audio source. The TCN is
composed of stacked 1-D convolutional layers (ConvBlocks
in the code), with exponentially increasing dilation values
(1,2,4,...), allowing the network to capture long-term de-
pendencies. Residual and skip connections are included to
improve gradient flow. The TCN outputs a mask of size equal
to the number of sources, C' = 2, which strictly labels the
input as one of the sources. The hyperparameters used in



the ConvTasNet paper for the number of stacks = 3, and
layers = 8.

The decoder reconstructs the time-domain waveforms for
each source by applying a 1-D transposed convolution to the
masked feature representations. The learned filters mentioned
in the encoder are mirrored in the decoder, combining the
features into overlapping waveform segments, which are then
summed to produce the final separated signals.

The model is trained entirely using scale-invariant signal-
to-noise ratio (SI-SNR) loss, directly optimizing the separa-
tion performances. Permutation invariant training (PIT) is
employed to address label ambiguity, ensuring that the net-
works learns to associate the correct masks and sources re-
gardless of their order in the input.

2.3. Student-teacher framework

The teacher-student framework, also known as knowledge
distillation, is a machine learning technique, originally de-
signed to enable a simpler model, referred to as the student, to
mimic the behavior of a more complex model, known as the
teacher. The primary objective is to transfer knowledge from
the teacher to the student, allowing the student to achieve
comparable performance while being more efficient in terms
of computational resources. However, this is not the objective
of this paper. Although one could argue that computational
resources are a concern for most devices operating in real-
time, both the causal and non-causal models have exactly the
same number of parameters. Our focus is solely on the trans-
fer of knowledge between the teacher and student models,
with the goal of achieving similar performance in the causal
ConvTasNet model as observed in its non-causal counterpart.

2.4. Evaluation metrics

To evaluate the models, we employ a technique based on the
same metric used to compute the loss during training: SI-SNR
(Scale-Invariant Signal-to-Noise Ratio). Specifically, we first
calculate the SI-SNR between the clean and noisy data across
the entire test set, which serves as a baseline or ’floor” per-
formance. This baseline represents the starting point against
which model improvements are measured.

The metric SI-SNR improvement (SI-SNRi) is then calcu-
lated as the difference between this floor performance and the
SI-SNR computed between the noisy test data and the model’s
predictions. In essence, SI-SNRi quantifies how much the
model enhances the signal relative to the initial noisy input.
Higher SI-SNRi values indicate better performance in reduc-
ing noise and reconstructing the clean signal.

2.5. Approaches

Five models were trained, each utilizing a different frame-
work. To investigate whether a teacher model provided any
benefit to the student model compared to training without a

teacher, we trained two student models that learned directly
from the labels - one with dropout implemented and one
without. Additionally, we trained a student model solely on
teacher predictions. Another model was trained to learn from
the average of the teacher predictions and the true labels. Fi-
nally, we developed an end-to-end student model that learned
exclusively from teacher predictions, where both the student
and teacher were trained together.
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Fig. 1. Diagram illustrating the implementation of the
student-teacher framework. The left box represents the non-
causal teacher, while the right box corresponds to the causal
student. The "Concat” operation determines how the student
is trained—whether it learns solely from true labels, exclu-
sively from teacher predictions, or from a combination of
both, using the average of the true labels and teacher predic-
tions.
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Fig. 2. Diagram illustrating the implementation of end 2 end
training of teacher and student

3. RESULTS

The results are described in Figure 3 and Figure 4. Figure
3 shows spectrograms for a single data point for our 5 main
approaches. The top spectrogram shows the noisy speech and
the second spectrogram shows the clean speech label that the
model is trained to output. The spectrograms below them are
for each of the 5 models.

Figure 4 shows the evolution in SI-SNR validation loss
over 24 h of training on a single A100 GPU. The teacher used
for the student was trained for 48 hours on a single A100 GPU
and achieved a final SI-SNR validation loss of -15.27.

Our code be seen and our results reproduced by visiting
our GitHub repositoryl


https://github.com/AlecHero/DL-CausalSpeechProject

Fig. 3. Comparison of spectrograms for a single data point:
The figure shows the spectrograms of clean and noisy speech,
along with model predictions.

4. DISCUSSION

We focused on making a fair comparison when training each
of our models. We did this by setting a time limit of 24 hours
of training on a single A100 GPU for each of our approaches.
As some approaches are more computationally heavy (e2e
and partly teacher), they also ran through fewer epochs. Al-
though some of the models seem to still be improving, 24
hours was a reasonable point, where we could try multiple
different approaches and still have the models converge.

Our results show that using a non-causal teacher to train
a causal student significantly improves the student’s per-
formance when compared to a non-regularized approach.
However, adding another regularization method, in our case
dropout and weight decay, had the same effect as a teacher.
Although a student learning directly from a pre-trained
teacher performs equally well, training a student directly
from the labels while using dropout and weight decay avoids
having to spend compute on pre-training a teacher, and it
would, therefore, be the better choice.

In addition to the models shown in Figures 3 and 4, we

SI-SNR validation loss over 24h training on 1 A100 GPU.

Fig. 4. Overview of SNR validation loss over 24h for the
training of 5 different approaches on the EARS-WHAM
dataset.

tried multiple other approaches. Firstly, we tried to train using
intermediate loss, where the intermediate layers of the student
and the teacher were compared and used to calculate the loss.
Using only intermediate loss, intermediate loss with SI-SNR
loss based on the model outputs, and using intermediate loss
only for a certain number of epochs all showed in no way to
be comparable to the performance of our other approaches.
Although we in theory believed this would be a fast way to
transfer knowledge, we decided not to proceed with this ap-
proach, as the result proved us wrong.

4.1. Loudness in outputs

When training using SI-SNR, the resulting sound is not nor-
malized, resulting in an extremely high-pitched, high-volume
output. This can be resolved by normalizing the output of the
model. This does, however, at times, create a high-pitched
background noise, which could potentially be avoided by us-
ing or modifying loss functions to directly take the amplitude
into account.

4.2. Limitations of Real-Time Predictions

A significant limitation of our approaches is the feasibility
of real-time predictions. Although our student models are
designed to be causal, which theoretically enables real-time
processing, their size introduces noticeable computational de-
lays. This latency may render our models unsuitable for ap-
plications that require instantaneous responses, such as live
audio processing.

Furthermore, the latency introduced by larger models
highlights a trade-off between model complexity and real-
time performance. While our current models achieve fairly
good results, achieving similar results with smaller, more
efficient architectures is more challenging. Future research
should explore whether using a teacher-student framework for
smaller models would result in similar conclusions as ours,
or if a student-teacher framework would be more beneficial
in such a setting.



4.3. Broader Implications and Future Directions

Future research could explore hybrid approaches that com-
bine the strengths of regularization methods with the student-
teacher framework to see if that would increase the perfor-
mance significantly more. Another interesting continuation of
this project would be to further investigate how to make an in-
termediate loss function that could transfer knowledge faster
than a normal loss function would be able to. At last, trying
our approach with smaller models could also be interesting
to see if the results are persistent regardless of a model’s size
and complexity.

5. CONCLUSION

This study explored the use of a student-teacher framework
to improve causal speech enhancement models, focusing on
comparing its effectiveness against regularization methods
such as dropout and weight decay. Our findings indicate that
while leveraging a non-causal teacher model significantly
enhances the performance of a causal student, regularization
techniques achieve similar results without the computational
cost of pre-training a teacher model, making them a more
practical alternative.

Efforts to incorporate intermediate loss functions for
knowledge transfer did not yield comparable performance to
our primary approaches, highlighting the complexity of effec-
tively utilizing intermediate layers for training. Furthermore,
challenges such as high-pitched noise from non-normalized
outputs and the computational delays associated with larger
causal models underscore the trade-offs between model size,
complexity, and real-time feasibility.

Future research should investigate strategies that com-
bine regularization methods with the student-teacher frame-
work, explore refined intermediate loss functions for more
efficient knowledge transfer, and evaluate the framework’s
effectiveness with smaller, more efficient model architec-
tures. These directions could provide further insights into
optimizing causal models for real-time speech enhancement
applications while maintaining performance close to that of
non-causal alternatives.
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